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Abstract

In this combination background and position paper, we argue that careful work is needed
to develop accurate methods for relating the results of fine-scale numerical simulations of
material processes to meaningful values of macroscopic properties for use in constitutive
models suitable for finite element solid mechanics simulations. To provide a definite
context for this discussion, the problem is couched in terms of the lack of general objective
criteria for identifying the size of the representative volume (RV) of a material. The
objective of this report is to lay out at least the beginnings of an approach for applying
results and methods from statistical physics to develop concepts and tools necessary for
determining the RV size, as well as alternatives to RV volume-averaging for situations in
which the RV is unmanageably large. The background necessary to understand the
pertinent issues and statistical physics concepts is presented.
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Executive Summary

Brief summaries are presented of effective medium theory for elastic composites and the
statistical physics topics of critical phenomena and percolation models. These provide
background for a discussion of determining the size of the representative volume (RV) in
composites. The aim is to determinelasticeffectiveproperties to use in macroscopic
material models by averaging over the RV. This method of homogenization of a
heterogeneous continuum is just one instance of length scale bridging. By making an
analogy between statistical continuum mechanics and statistical physics, we identify a
principle on which to base determination of the RV size for inelastic effective properties -
namely, that effective property values determined as volume averages over an RV are
nearly independent of the boundary conditions (BCs) on the RV. (For the volume averages
to be meaningful, the BCs considered are required to be macroscopically uniform.) This
principle implies a direct, trial-and-error method for determining the RV size once the field
guantity is identified whose average provides an inelastic effective property of interest. We
go on to explain the notion of correlation length because its determination presents the
possibility for reducing the trial-and-error search for the RV size by a single direct
calculation. Numerical investigations to test the ideas developed here are outlined at the
end of this report.

Vi
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Preface

The overall objective of our investigations of the concepts and tools of equilibrium and
nonequilibrium statistical physics is to develop techniques and understanding that will al-
low us to address problems encountered in modelinghieeoscopidhermo-mechanical
behavior of materials that are heterogeneous om#s®scopiscale, a fine scale continu-
um that is still much larger than the atomic scale. The application for such material models
is in numerical solid mechanics simulations for which the spatial discretization length is
larger than the mesoscopic scale.

Bridging the length and time scales between mesoscopic properties and processes and
macroscopic simulations is an important step in the development of predictive computa-
tional solid mechanics simulations. Among the material modeling problems that our work
may help with is developing fracture criteria, which are the rules governing the magnitude
and direction of the incremental growth of a macroscopic crack in a solid mechanics sim-
ulation. Identifying fracture criteria that are based on mesoscopic (microstructural scale)
thermo-mechanical mechanisms is a key problem in developing predictive solid mechanics
simulations.

The present inquiry is preliminary work concerned with several generalities related to
bridging between scales and with the basis of a common method for linking mesoscopic
processes to macroscopic behavior - namely, averaging the mesoscopic details over a rep-
resentative volume. Accordingly, there is little mention of fracture in this report. Neverthe-
less, the region near the tip of a macroscopic crack is inherently a nonrepresentative vol-
ume. Our consideration of what can be done when the representative volume is too large is
preliminary to addressing in the future how to treat the crack tip region at the macroscopic
scale. Beyond this we note that percolation theory recently has been extensively investigat-
ed as a model for fracture in disordered materials. That a percolation model might reveal
aspects of the collective behavior of microcracks makes the current project’s pursuit of con-
cepts from statistical physics and critical phenomena an additional contribution to the an-
ticipated follow-on investigation of cracking.
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1. Introduction

There is increasing interest within Sandia National Laboratories (SNL) and throughout
the DOE weapons laboratories to develop numerical simulation capabilities that can sub-
stantially augment laboratory testing and can be used in assessing device reliability. In this
context it is important to appreciate that the macroscopic quantities required to predict ther-
momechanical material response cannot always be calculated accurately at the macroscop-
ic continuum scale. In the absence of a sufficient quantity and variety of experiments, such
guantities need to be calculated by directly simulating the micromechanical processes that
underlie them. Using micromechanical simulations to determine values of macroscopic
guantities requires bridging.e., rigorously relating - their disparate length and time
scales. Classical approaches for bridging length scales posit the existenocepoéseh-
tative volume’ (RV) - a volume over which simple volume averaging of the properties or
responses of the constituent phases provides a useful description of the overall thermo-me-
chanical response of the heterogeneous material. This motivates the quelsivonah the
size of the RV be determined for a material whose macroscopic response is calculated by
simulating micromechanical processeg®hatural subsequent question is thethoW can
the results of microstructural scale simulations be related to macroscopic quantities when
volume averages over an RV are not feasiblEf?& purpose of this report is to review the
basic results fromaffective medium theory(EMT), the theory of determining characteris-
tic overall properties of composites (heterogeneous continua) and discuss fundamental sim-
ilarities of EMT to the modern view of statistical mechanics. These both contribute to the
most basic purpose, that of identifying an approach for developing a direct means of deter-
mining the RV size. For clarity the termatatistical physics will be used instead of "sta-
tistical mechanics" to refer to the averaging of microphysics phenomena. This will distin-
guish it from ‘statistical continuum mechanic$ (SCM), which refers to the averaging of
micromechanics phenomena. Though much of the discussion is general, our intended ap-
plication is to numerical simulation of the thermomechanical response of solids.

(A note on terminology: Micromechanical processes are those occurring on the micro-
structural scale, which is finer than the homogenized continuum or finite element mesh res-
olution but is large enough to be treated as a heterogeneous continuum. Here “microstruc-
ture” refers to any heterogeneities in the continuum, not only to the crystal grain structure.
It is usual that microstructural scales in continua are much larger than atomic scales. For
this reason these scales are often referred tmasdscopitrather than “microscopic.”)

The application of interest to SNL that concerns us here is using numerical simulations
of microstructural-level processes to generate synthetic constitutive data. The simulated
data provide the basis for constructing or extending a macroscopic material model that can
be used in standafohite element method(FEM) simulations of solid mechanics. Restat-
ed, we seek to use the numerical simulation results to determine the equilibrium, macro-
scopic thermo-mechanical properties dfanogeneousffective mediumrhose response
is the same as the RV-averaged response of the simulated material. (The additional diffi-
culties of determining nonequilibrium quantities are commented on later.) As explained be-
low, it is only for regions as large or larger than the RV that an EMT can provide an accu-
rate description of macroscopic thermo-mechanical response. Adopting a numerical ap-
proach to homogenization largely obviates assumptions about the distribution of
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heterogeneities and the nature of their interactions because it is able to treat a wide range
of realistic distributions and interactions. This capability is the main advantage of determin-
ing bulk material properties from mesoscopic numerical simulations. However, this versa-
tility also makes identifying the size of the RWiecessityThe simulated system must be

as large as the RV for the simulation results to provide overall responses that are represen-
tative of macroscopic constitutive behavior. Because the simulated materials will be heter-
ogeneous on the mesoscopic scale, they will be referred to, in genemh@ssites

Given that homogenized descriptions of the response of heterogeneous materials are
commonly used in continuum mechanics, it is worth explaining why RV size in nonperiod-
ic materials is rarely determined, if ever. A typical SCM treatment defines densities as vol-
ume averages over a hypothetical but unspecified RV. These densities are then used as
though they were truly thermodynamic quantities. This type of micromechanics develop-
ment is carried out without regard to the size of the RV on the basis of assuming a uniform
distribution of heterogeneities and that their mutual interactions are either negligible (dilute
concentration case) or self-consistent (mean-field case). The resulting theoretical predic-
tion is internally consistent, but its validity is limited to regions equal in size to the RV or
larger. Hence determining the RV size should actually be part apgilieationof this type
of SCM result. Situations intermediate to these limiting cases are of greatest concern for
specific determination of the RV. That the RV size is not determined for these applications
points out the potential danger that an RV-based method can be applied inappropriately
when the RV is larger than the macroscopic volume of interest, if it exists at all. Without
explicitly identifying the RV size, it may not be evident that a classical scale-bridging
method is without a sound basis and that predictions based on the resulting material model
are incorrect. This unsatisfactory situation exists because there is no objective definition or
set of criteria for establishing that a chosen averaging volume in a nonperiodic material is

actually an R\VA

Relating the mesoscopic details of geometry, properties, and deformation processes to
average mechanical properties of a macroscopically heterogeneous material is a central
pursuit of statistical continuum mechanics (SCM). This averaging problem appears highly
analogous to the averaging problem of statistical physics. Here we use statistical physics as
a guide to clarifying the meaning of macroscopic effective properties of a heterogeneous
continuum. Whether statistical physics also provides a guide to determining values of mac-
roscopic effective properties of composites requires further comparison and consideration,
which is begun in this report. Identifying similarities between statistical physics and SCM
is useful for providing a unified conceptual framework in which to view the two averaging
problems. It is hoped that this will be of additional use in leading to practical solution pro-
cedures in one or both of the disciplines, based on approaches used in the other.

The ultimate goal of statistical physics is understanding how continuum physics is a
manifestation of the behavior of a dynamic system of a very large number of microscopic,
interacting particles occupying a volume very much larger than the particle dimensions. In
particular, equilibrium statistical physics determines how to compute the densities of mac-
roscopic mechanical quantities - i.e. any extensive quantity per unit volume - that appear in
equilibrium thermodynamics theory as averages over the motions in a system of many
atomic-scale particles. This provides the justification of equilibrium thermodynamic theory
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for homogeneous systems as well as for macroscopically heterogeneous systems that are
not too far from equilibrium. A heterogeneous body is regarded as comprising many small,
macroscopic volumes that are homogeneous and in equilibrium with the local conditions.
In each small volume equilibrium thermodynamics is taken to govern the densities of ther-
modynamic variables. The overall behavior of the macroscopic body is given by macro-
scopic phenomenological dynamical relations that describe the changes of the thermody-
namic densities. Examples are reaction-diffusion equations and continuum momentum flux
equations. The dynamical behavior of such a heterogeneous body is assumed not to violate
the underlying assumptions of local thermodynamic equilibrium.

The application of statistical physics to descrnbaequilibriummacroscopic process-
es - i.e., to derive the continuum equations of motion from the dynamics of a system of
many particles - is an area of current research. Being able to describe nonequilibrium pro-
cesses is a goal of our investigations, but it will take much effort to accomplish. While some
discussion is given below of the additional complications that occur when treating non-
equilibrium phenomena, the scope of this report is largely limited to equilibrium properties.

In the next section the RV is defined as the minimum volume of material for which the
overall properties are independent of boundary condit®mgndary condition indepen-
dence(BCI), the insensitivity of average property values to the choice of allowed BCs, is
argued to be appropriate and sufficient for defining the RV for time-independent properties
because it is the essential aspect of what is meant by material property. BCI provides a con-
ceptual link to bulk property determination in statistical physics. This connection is dis-
cussed in the third section. In Section 4 key results of EMT are summarized and the implied
formal procedure for identifying the RV size is given. This leads into the discussion of es-
tablishing a practical procedure for identifying the RV size in Section 5. There it is noted
that BCI should be strongly influenced by the geometrical configuration of the heterogene-
ities in the volume. Thus the task is to identify which aspect of the internal geometry is key
and how to determine when it reaches a state that provides BCI. Because of its physical sig-
nificance, the correlation length is a low-order measure of a statistical distribution that is a
potentially useful quantity to use to express the criteria that the internal geometry must
meet for volume averages to be BC independent. To illustrate its physical meaning, basic
aspects of critical phenomena and the theory describing it are presented in Section 6. Brief
descriptions of the scaling hypothesis and percolation theory are also presented in this sec-
tion along with a discussion of the possible relevance of critical phenomena to microme-
chanical modeling. The initial study that will be pursued to begin investigating the issues
and possibilities raised in this report is outlined in Section 7.

2. Boundary Condition Independence of RVs

We begin with Hill's characterization of a representative voldme:

“This phrase will be used when referring to a sample that (a) is structurally
entirely typical of the whole mixture on average, and (b) contains a suffi-
cient number of inclusions for the apparent overall moduli to be effectively
independent of the surface values of traction and displacement, so long as
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these values are ‘macroscopically uniform.” That is, they fluctuate about a
mean with a wavelength small compared with the dimensions of the sam-
ple, and the effects of such fluctuations become insignificant within a few
wave-lengths of the surface. The contributions of this surface layer to any
average can be made negligible by taking the sample large enough.”

It is understood that the volume-averaged (“overall”) properties of the RV are the desired
effective properties of the hypothetical equivalent homogeneous material. Hill's character-
ization is notable both for being one of the first and for being possibly the only one that
includes near independence of the average properties from the boundary conditions [part
(b)] as fundamental to the RV. For the two reasons that follow, we take the sole defining
feature of the RV to be the independence (to some prescribed precision) of the volume av-
erage properties from the boundary conditions. First, BCl is the essence of what is meant
by “material property.” In application the properties of a material are taken to have values
that are fixed or possibly depend on local mechanical field variables, and these values can
be used to calculate the response of a sample of that material to any possible boundary con-
ditions. Aspects of a specimen that do depend on boundary conditions are structural prop-
erties, not material properties. Second, the structural similarity referred to in part (a) of
Hill's characterization is both unneeded and overly restrictive for defining the RV, as ex-
plained next.

Several other workers who have made substantial contributions to the averaging prob-
lem of SCM hold part (a) of Hill's characterization, alone, to be the defining feature of an

RV; However, they elaborate on it furthef‘or make due with an imprecise characteriza-
tion.2 The structural similarity of the RV to an arbitrarily large volume of the composite is

referred to astatistical uniformity L orstatistical homogeneityB It is an undesirable con-
straint because it is a restriction on the composite material as a whole as well as on the RV.
If a composite is statistically homogeneous, then this characterization implies that the RV
can be identified as the minimum volume for which the statistical description of the geo-
metrical heterogeneity is, for practical purposes, indistinguishable from that of a very much
larger sample of the composite. This implication is clear, and it suggests an approach for
identifying the RV is to evaluate the variation of some measure of the heterogeneity with
sample size. However, as discussed in the introduction, the RV size is never actually deter-
mined in theoretical treatments. One reason statistical homogeneity is often required in the-
oretical developments of effective properties is that when it holds, volume averages over
the RV, or any larger volume, equal ensemble averages. The equality of these averages,
calledergodicity, allows the tools of ensemble theory from statistical physics to be applied

to the problem of determining effective material properties of compdsités.

(This notion of ergodicity is an analog of the notion originally developed in statistical
physics, where the ergodic hypothesis asserts the equivalence of time averages and ensem-

ble average%.Ergodicity in statistical physics was long believed to be necessary for a mi-
crophysics system to achieve thermodynamic equilibrium, which is a special kind of statis-
tical uniformity. This is why the concept of ergodicity is appealing in the problem of effec-
tive properties in SCM. In this light it is interesting to note that in modern statistical
physics, it is understood that ergodicity is not prerequisite for the establishment of thermo-
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dynamic equilibrium. Conservative Hamiltonian systems that are fully integrable can be er-

godic19111t is now understood that thermodynamic equilibrium and macroscopic irrevers-
ibility arise from the phase space mixing behavior of nonintegrable conservative Hamilto-

nian system$%1Mixing, in turn, arises from deterministic mechanics in systems that
exhibit a sensitive dependence on initial conditions and, consequently, tend to become cha-
otic. So it is that the analogy to statistical physics used to treat the averaging problem in
SCM has become outdated. It would be interesting to consider whether a new, more useful
analogy might be developed based on current statistical physics understanding.

Statistical homogeneity is unneeded because it is not essential to the meaning of ma-
terial property, and it can be dispensed with because it is unrelated to BCI. The value of a
material property can vary over macroscopic distances and still be well-defined locally (on
the macroscopic scale), according to the criterion of BCI. Statistical homogeneity con-
strains the value of a material property from having any spatial variation. This constraint is
clearly not essential to the meaning of effective material property. Indeed it is unwanted
restriction on what is meant by effective material property. In addition we note that ensem-
bles are merely a tool in statistical physics that does not add to our understanding of how

fine-scale properties and processes are manifest in overall resfd@rsemble averages

have no strict meaning in any one sampt8yet we need to treat individual samples if we
are to understand the relation of the fine scale to macroscopic properties in both statistical

physicd® and SCM.

Hill's restriction to macroscopically uniform boundary conditions deserves comment
regarding both thdeterminatiorand theuseof effective material properties. First, macro-
scopically uniform loading is typically used in determining material properties, even in ho-
mogeneous materials, because their use simplifies relating the measured response of a spec-
imen to a material property. Also it seems reasonable to expect it to be possible to obtain
BC-independent overall properties only for macroscopically uniform loadings. Second, the
implied restriction to using effective properties only in describing the response to macro-
scopically uniform loading is easily understood by analogy with the “material point” of the
continuum in an actual homogeneous material. The RV should be understood to be the
smallest volume of the composite material that can be treated as a homogeneous continu-
um. In this sense, the RV is analogous to the continuum material point, which is the small-
est volume of the material that can be regarded as a continuum. As such all features of the
continuum material point, the material property values and the field variables, must be spa-
tially uniform (cf. Ref. 12, p. 1; Ref. 8, p. 38). The continuum description is accurate only
when the loading produces no significant gradients over the dimensions of the continuum
material point.

For example, the homogeneous material cannot be treated as a continuum to describe
its response to very high frequency vibration. Accurately describing this loading involves
the vibrational modes of the discrete lattice. Similarly the response of a body composed of
a composite material can be accurately described as though it were composed of the ho-
mogenized material only if the mechanical fields are uniform over volumes the size of the
RV. This is achieved by loading that is macroscopically uniform over distances comparable
to the linear dimension of the RV. That is, effective property values can be used to describe
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the response of a body composed of the heterogeneous composite only when the loading is
sensibly constant over distances comparable to the linear dimension of the RV. Though
spatial variation of effective property values needs to be accommodated, the effective prop-
erties should be nearly constant within regions comparable to the RV size for the response
to be accurately described by that of a nonuniform homogenized material. So it is useful
and appropriate to regard the RV as a very large continuum material point for the fictitious,
homogenized material. The requirement for macroscopically uniform BCs restricts the al-
lowed BCs to the specification of a uniform traction or displacement vector on each pair of
coordinate faces of the body.

Next we ask the question, “Should we expect that an RV exists?” In other words,
should we expect that for a sufficiently large volume, the overall properties of the material
become nearly independent of boundary conditions? We know that RVs exist for some ma-
terials. For example, fine grained, polycrystalline, structural metals are well described as
homogeneous, isotropic materials for many practical applications; but, in general, the ex-
istence of an RV is an empirical question. It can only be answered by observing the behav-
ior of a composite material under the relevant conditions. Furthermore, we should antici-
pate that whether an RV exists and its particular size are dependent both on the property of
interest and the accuracy required by the application at hand. Nonetheless, it may be possi-
ble to enumerate classes of micromechanical behavior that are compatible with existence
of an RV.

For a material that has an RV, we ask: “What is it that makes the overall properties of
the RV BC independent, whereas those of any smaller volume are not?” The contrast in
property values of the constituents of a composite has been demonstrated by numerical sim-

ulation to effect the RV size of an elastic compokité/e expect this dependence to persist

for inelastic composites response as well, but for a given composite, we presume that the
effect of the contrast in the constituent’s property values only determines a scale factor. The
property value contrast is thus assumed to be a parameter and, consequently, BCI in a given
composite is taken to only involve aspects of the statistical description of the internal ge-
ometry the shapes, configuration, and spatial distribution of the heterogeneities. This as-
sumption provides some guidance for developing a direct method of determining the RV
size, rather than a trial-and-error search for a volume that provides nearly BC-independent
average values. This is pursued further in Section 5.

3. Bulk Properties in Statistical Physics

3.1 Macroscopic Equivalence

In applying statistical physics to understand most continuum phenomena, the task

amounts to evaluating the bulk properties of a mat&tiBased on the observation of lo-
cality (also known as “local action”) in macroscopic continua.-that the values of den-
sities at a given spatial location are determined solely by the environment at that location -

Balescu argues for adopting locality as a principle of statistical physics t{efnis prin-
ciple is equivalent to requiring that properties of the macroscopic systeaependent of
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boundary conditionsFormally, this is expressed by thenciple of macroscopic equiv-
alencel® Consider the valuey, , of some material propeetysity - i.e., a material quan-
tity per unit volume - for a sequence of system volurfieg, , that increases without

bound. The members of the sequence are successively enlarged systems that leave un-
changed thiocal conditionsat equivalent locations within the different systems. Requiring

macroscopic equivalence restricts the system size dependence of the intensive jyantity,
to have the form

AV = A+ A(v). 1)

N\ is the bulk value common to any macroscopic system in the class, provided it is not too

small. The remaining contribution ®  has a volume dependence arising from the influ-
ence of the system boundaries. Because this source of size dependence decreases as the sur-
face-to-volume ratio decreases, its volume dependence has the limiting behavior

The systems having a common bulk value of a property are said to be “macroscopical-
ly equivalent.” The goal is to determine the bulk valie, . Once it is known, it is the ap-
propriate value oh  to use to describe this material property for any of the macroscopically
equivalent systems. L&t = Kk denote the value of the index for which  is sufficiently

close to/A . This means that we do not have to specifically treat the corréqmp) , aris-

ing from BCs because the system volume is large enough that the surface effects make little
contribution to the value of the intensive quantity. This is to say that according to Egs. (1)
and (2), which are consequences of the principle of macroscopic equivalence, the removal
of size effects corresponds to BCI.

The bulk value is often most amenable to determination in the physically unobtainable
thermodynamic limit because it automatically removes boundary effects so\that/\

This is the limit in which the size and number of particles in a system become arbitrarily
large while maintaining a constant particle concentratith:

V> oo, andN - o with%: constant. 3)

From this description it should be understood that to state that some condition or rela-
tion holds “in the thermodynamic limit” is a shorthand way of saying that the condition or
relation is satisfied by the BC-independent bulk value of the property or properties under
consideration. Unambiguous values or expressions for densities in terms of averages over
microscopic quantities are obtained by rigorous mathematical evaluation of the thermody-
namic limit. In statistical physics we know that nearly BC-independent averages exist as
these are simply the macroscopic mechanical properties of the homogeneous materials that
are described by thermodynamics. Not all quantities fit this description. Thermodynamics
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is also concerned with thermal quantities which are related to the state of a system rather
than to averages of microphysics variadfe&lso macroscopic properties do not exist for

all systems* Balescu gives as examples thin films, for which one dimension is not mac-
roscopic, and ultradilute gases, in which nearly all particle collisions are with the container
walls so the entire macroscopic behavior is due to boundary conditions alone.

There is one other size dependenck to  in addition to that arising from surface effects.
This is that the system be sufficiently largefor  to have the same value as any larger mac-
roscopically equivalent system. To understand the cause of this size dependence, consider
a practical determination of the value/of  for a finite-sized system. Namely\take to be
the average of the quantity, , over aregion in the interior of the system that is sufficiently

distant from the surfaces to be insensitive to the BC on the system. The vAlue of  deter-
mined in this way will depend on the size of the region over which the average is taken until
the minimum linear dimension of this region exceeds the correlation length of the bulk sys-
tem. As explained below in Section 6, the correlation lerigth, , is the characteristic length
of the bulk system. It is a measure of the range over which the response in one portion of
the system is strongly related to that in another portion of the system. A size-independent
bulk value is not obtained until the averaging region is sufficiently large€than that it sam-
ples largely independent portions of the bulk system. In Section 6 it is also shown that a
correlation length characterizes the range of influence of the surface conditions. This cor-
relation length possibly is a different one than for the bulk system.

The expression for stress in a system of discrete particles provides an example of sev-
eral of the points made in this section. This is presented in the appendix.

For nonequilibrium systems the concepts presented above are applied in the following
way. The locality principle is taken to be that the rates of change of the densities depend
only on the local conditions. Equations (1) and (2) are assumed to be true for times less than
some characteristic time, which is taken to increase without bound as the volume increas-

es!* Finally, the analog of the thermodynamic limit for nonequilibrium systems is called

the hydrodynamic limit ;*°> however, it applies equally to solids and fluids. The hydrody-
namic limit takes the time scale into consideration and is much more complicated. It is the
subject of highly technical current research.

3.2 Comparison of Statistical Physics and SCM

Itis interesting that BCI is the essential requirement for determining bulk properties in
both statistical physics and SCM. However, this is in part by design. The statistical physics
explanation of what is meant by “macroscopic bulk property” provides the framework for
characterizing the relation of the properties of an effectively homogeneous material to
those of an underlying heterogeneous medium. Thus, the arguments in Section 2 supporting
taking BCI as the defining feature of the RV were guided by the statistical physics descrip-
tion of the bulk value of a material property. The similarities and differences need to be
considered further if we are to learn something from the comparison of the averaging prob-
lems in SCM and statistical physics.
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The formal description of the bulk value of a material property for a macroscopically
large microphysics system given by Eqgs. (1) and (2) at first appears incompatible with the
notion of effective properties of a heterogeneous continuum developed in Section 2. While

Balescu does require a minimum system $fzhijs does not seem to be the RV in the sense

of Section 2 because the BC-independent bulk value is formally achieved only in the infi-
nite volume limit and not for the minimum allowed system size. (Indeed, Balescu’s inten-
tion in setting a minimum size requirement for  is not entirely clear.) Making an explicit
analogy from the statistical physics description given by Egs. (1) and (2) to SCM might lead
one to conclude that BC-independent averages should not be expected for any volume of
composite but that the bulk value should be determined in the fictitious infinite volume lim-
it and then used as the value for the material property for finite composite systems.

As a practical matter the discrepancy between the two disciplines is not so severe.

When the sequence of systems in Eq. (1) converges quickly, as is often tHescefee

effects can already be negligible for Balescu’s minimum size for a macroscopically equiv-
alent system. In this case the minimum-sized, macroscopically equivalent system can be
consistently interpreted to be the continuum material point. Consequently, the system size
at which the material property is equal to the bulk value, within the desired precision, is
completely analogous to the RV in SCM as characterized in Section 2.

This discussion identifies a sense in which the statistical physics and SCM character-
izations of material properties are compatible. As a consequence, it suggests that the bulk
value or effective property value can be obtained by considering the fictitious infinite vol-
ume case and then used as the value of a material property for systems of any size greater
than some minimum - namely, the RV. However, it is unlikely to be practical to numerical-
ly determine effective properties of a heterogeneous continuum from the infinite-sized sys-
tem. Moreover, such an approach for a heterogeneous continuum still requires identifying
the RV size, which is to be taken as the minimum system size that Balescu stipulates.

Another difference from between the two disciplines is that the statistical physics char-
acterization of macroscopic material properties is more general than the SCM characteriza-
tion of effective material properties in that it applies equally to any macroscopic field vari-
able. The bulk value is to be taken as the macroscopically local value of a macroscopically
nonuniform field. The restriction that the fields have negligible variation over some mini-

mum microscopic volume is not statédut is, perhaps, implicit in the concept of macro-
scopic fields. This is worth further consideration in the context of specific applications.

Differences between the systems treated in the two disciplines may be critical to estab-
lishing an analogy between statistical physics and SCM. In statistical physics systems the
linear size of the molecular constituents relative to the macroscopic system is four orders
of magnitude for a nanogram of material. Correspondingly macroscopic response times of
interest are much longer than subnanosecond atomic equilibration times. In contrast SCM
takes microstructural elements as the fine-scale constituent. A small macroscopic volume
will not necessarily contain many of the fine-scale constituents nor will macroscopic time
intervals of interest necessarily be much longer than characteristic times of some microme-
chanical processes. Henc, there is a much smaller disparity of length and time scales be-
tween the fine scale and macroscopic scale of a heterogeneous continuum than there is for

10



Aidun et al. 4. Effective Medium Theory and RVs

statistical physics systems. This is expected to have consequences for the accuracy of sta-
tistical physics techniques applied to SCM systems. It remains to be determined how se-
verely the accuracy of an effectively homogeneous description of a heterogeneous contin-
uum is reduced as compared to that for a statistical physics system.

A last difference is that the constituents in a statistical physics system are governed by
dynamical equations for discrete constituents, and the averages of interest are over a dy-
namic steady state (for equilibrium). In SCM static force balance governs the fine-scale
constituents and the averages are over static geometric configurations. The statistical cor-
relations of interest also differ. For statistical physics the mean free path of the particles
may be key, whereas in SCM the important measure may be certain moments of the heter-
ogeneity distribution.

4. Effective Medium Theory and RVs

4.1 The Hill Condition

The goal of effective medium theories (EMT) is to represent the behavior of a hetero-
geneous material by a homogeneous material whose properties equal the RV-averaged
properties of the heterogeneous material. Doing so has the practical advantages of reducing
the detail of the material description to only those aspects that are of interest on a large scale
and making available for the heterogeneous material all of the numerical and mathematical
analysis techniques developed for treating homogeneous Bodigfective properties
must be determined in a statistical sense because we do not have complete knowledge of
the heterogeneous material, or we want to describe nominally equivalent samples that differ
in fine-scale details. Energy principles can be applied to determine theoretical bounds on

the properties using whatever information is known about the material’s constitéion.
ternately an experimental determination of an effective property is made by testing a col-

lection of samples to determine a statistical estirhd®&he resulting bounds or values are
then used to calculate the average mechanical response of the heterogeneous material.

Constraints exist on the circumstances for which such an effective medium description
is appropriate. The constraints insure that the effective medium behaves like an ordinary
continuous medium by requiring that averaged balance equations (mass, momentum, ener-

gy, entropy) have the same form as the local balance equations for a uniform cortinuum.
For example, consider the linear elastic response of a polycrystal. We are interested in the
effective elastic constants (EEC). The constraints simplify to requiring that the EEC de-
fined energetically and mechanically are compatible. Defined mechanically, the EEC are

denotedCi'}fd and are the proportionality constants between the volume-averaged stress
and volume averaged strain tensors,

M
[o;0= Gji gL (4)
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(Summation is implied on repeated indices.) Defined energetically, they are d@nEgted

and are the proportionality constants between the volume-averaged strain energy and the
volume-averaged strains

1.E 1

But U is just the volume average of the local strain energy

_1 _1 1. .

where the primes denote the fluctuation of the variable about its volume average value.
Substituting forDJijD from Eq. (4) and equating to Eq. (5) yields

E M o
(Giw — Ciju ) gL U= Lo &'y (7)

This result shows that the mechanical and energetic definitions of the EEC are compatible
only if the heterogeneous material is loaded so that the volume average of the product of
the stress and strain fluctuations (the covariance) vanishes

[0'e;0= 0. 8)

This constraint, first determined by I—ﬁlbxpresses the requirement that the external forces

deforming the polycrystal are not correlated with its microstruCtéfa. an arbitrary vol-
ume of a crack-free heterogeneous material, the Hill condition, Eq. (8), is satisfied by uni-

form applied static tractions or linearly varying displacem%mlsls class of equilibrium
applied loads will be referred to as uniform boundary conditions (UBC). Equation (8) is

also satisfied by selected macroscopically uniform mixed boundary conditidAghe

Hill condition, Eq. (8), has been generalized to arbitrary thermomechanical prdfilems,
which makes it useful also in defining nonlinear effective media. The UBC have been sim-

ilarly generalized® No equivalent results are available for developing effective medium
descriptions for dynamic, nonequilibrium systems. One difficulty in developing a dynamic
theory is that the inertial forces are correlated with the microstructure so that, in general,

Eq. (8) is not satisfiedIn practice Eq. (8) cannot be satisfied for many composites of in-
terest. Foremost among these are materials containing microcracks. As discussed below,
the common practice is to set bounds on energetically defined effective properties or eval-
uate mechanically defined effective property values from an explicit micromechanical
model.

The Hill condition imposes a constraint on the kinds of macroscopically uniform load-
ing that are appropriate in determining effective property values or using them to describe
the macroscopic response of a composite. It does not provide BCI. For BCs that satisfy the
Hill condition, the EECs determined from Eq. (4), by applying a set of displacement UBCs,
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will be compatible with those determined from Eq. (5). However, the resulting EEC tensor
will not necessarily be the inverse of the effective compliance tensor determined from, say,
the mechanical definition

M
;0= Sju o0 (9)

by applying a set of traction UBCs. The different boundary conditions lead to different val-
ues of the effective properties. It is implicit in Hill's characterization of the RV that this
difference owing to BCs is reduced below some prescribed small value when the averaging

volume is an RV. There is some ambiguity in the literature on this péimut this conclu-
sion is supported by other theoretical developnidtasd illustrated by numerical simula-
tions of elastic composité§:19This property of the RV to provide averages that are BC
independent is sometimes called “statistically representatiwbjch should not be con-

fused with the property that the effective properties are independent of location within a
large body, which is called “statistical homogeneity.”

This discussion suggests the following procedure for identifying the size of the RV of
a micromechanically simulated material exhibiting regular (noncritical) behavior. The size
of the RV can be chosen to be the volume whose volume-averaged response yields effec-
tive properties that are independent of the UBC within some prescribed tolerance. Estab-
lishing a practical, direct method for identifying the RV, instead of this trial-and-error pro-
cedure, is discussed in the next section.

Boundary condition independence does not depend on satisfying the Hill condition,
Eq. (8). Even though the effective properties defined mechanically and energetically may
not be compatible, when BCI is achieved, we have, to within some prescribed tolerance,

-1 -1
S}Y’d =(Ci}\|/'(| ) andS,fd :(Qﬁd ) Sﬁd is the effective compliance tensor deter-
mined from the energy expression corresponding to Eq. (5).

_1_E

In these circumstances the average elastic strain energy also is BC-independent, which cor-
responds to the merging of the bounds on the effective properties that are provided by en-

ergy principle€ Finally, when averaged over the RV or any larger, fixed volume at a fixed
location, Eq. (7) shows that the volume averaged stress-strain covariance becomes

[0 €' 0= LK L&D, (11)
whereKj,,, is a constant tensor.

As noted above, the Hill condition cannot be satisfied for many composites of interest.
Materials containing cracks stand out prominently among such composites. Whether the ef-
fective properties of such composites are defined mechanically or energetically, the RV can
still be identified as the volume for which they become sufficiently independent of BCs.
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The incompatibility of the mechanically and energetically defined effective properties for-
mally constrains their use to only constitutive calculations or energy calculations, respec-
tively. The advantage of choosing to work exclusively with energetically defined effective
properties is that bounds can be put on the values by applying energy extremum princi-

ples28Use of energetically defined effective properties in macroscopic material models is
probably an acceptable approximation when only bounds on effective property values are
known. The other common approach, referred to in the Introduction, is to make enough as-
sumptions to sufficiently specify the distribution of heterogeneities within the RV and their
mutual interactions. Then an explicit micromechanical description of the behavior of the
constituents is developed. The overall behavior is determined by first solving for the re-
sponse of one constituent to chosen applied BCs and mutual interactions. This response is
then averaged over the RV. Because the distribution of the interacting constituents was
specified, the RV average is rendered by averaging the single constituent response over this
distribution. In this way mechanically defined effective properties are obtained. The result-
ing analytical expressions, not bounds, for the effective properties are formally restricted
to being used in constitutive descriptions and then only for those volumes larger than the
RV within which the assumed distribution and interactions obtain.

It should be evident from the discussion of the RV in Section 2 and the limitations of
effective medium theories in the present section, that it is highly unlikely that a viable RV
can be identified near the tip of a macroscopic crack. This is primarily because the loading
of any region near the crack tip has large gradients and so is not macroscopically uniform.
Although if the response of a system of microcracks can be well modeled as critical behav-
ior (Section 6), characteristid.e., critical - patterning and coalescence of a population of
microcracks might be determined.

We have presented two basic theoretical results from EMT. First, the requirement for
vanishing stress-strain covariance, Eq. (8), in order for mechanically and energetically de-
fined effective properties to be compatible. Second and independent of the compatibility
issue, the empirically based expectation that as the averaging volume is increased, effective
properties tend to become BC independent and, correspondingly, the energetic bounds on
their values merge. This expectation should, presumably, be expressible as reasonable as-
sumptions about the volume dependence of the heterogeneity distribution of a composite.
(This matter is pursued further in the next section.) Whether BCI actually occurs is an em-
pirical question that is only settled by measuring the response of the composite of interest.
Both results from EMT have been demonstrated for composites with elastic constituents
subjected to small deformations. These basic concepts and results from EMT are potential-
ly highly relevant to the macroscopic modeling application of interest to SNL that was de-
scribed in the Introduction. However, before their usefulness can be realized, they need to
be extended in the following ways: The range of deformations should extend to finite strain,
inelastic constitutive behavior of the constituents of the composite should be allowed, ef-
fective inelastic properties need to be determined, numerical methods should be developed
for treating the discontinuous strain fields of cracked material with arbitrary crack distribu-
tion and interactions. These extensions appear to be achievable. As already noted, general-
izations of the Hill conditions for arbitrary thermomechanical problems have been report-

edl’ Several results relating average stress or strain to applied loads are applicable for fi-
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nite strain and inelastic constituent behavior (see comment, ref. 8, p. 35). Finally, the notion
that BCI is the defining quality of effective properties and that apparent properties should
tend to BCI values as the averaging volume increases seem to pertain equally, regardless
of the particular constitutive behavior of the composite constituents.

4.2 Comparison with Bounds on Effective Property Values

For completeness the differences need to be discussed between the intended applica-
tion of generating synthetic constitutive data and the more traditional pursuit of determin-
ing bounds on effective property values. A full discussion will be given elsewhere, or in a
revision of this report, after we acquire a sufficient understanding of variational bounding
methods and the interpretation of resulting bounds. Here we present several questions
whose answers depend, in part, on an understanding of variational bounding methods.

The goal in attempting to generate synthetic constitutive data from mesoscopic scale
simulations of the thermo-mechanical response of sufficiently large systems is to develop
a macroscopic description of the behavior of the simulated material in which the material
is treated as homogeneous and uniform over some small, but macroscopic, volume. The re-
sulting material model would then be used in numerical solid mechanics simulations to an-
alyze the structural response of macroscopic objects of interest. There are two distinct prob-
abilistic aspects of this procedure to generate synthetic constitutive data. They both arise
from the sample-to-sample variation of the exact configuration of heterogeneity in the ma-
terial. In this sense the probabilistic aspects are two sides of the same coin.

The first probabilistic aspect of the procedure is encountered in identifying the size of
the RV and values of the effective properties associated with it. It is necessary to assume
that the statistical description of the mesoscopic-scale material heterogeneity can be deter-
mined to a practical extent. This statistical description will be expressed in the form of a
distribution function, and it will be determined from microscopic observations on a set of
samples of the material: an ensemble. The statistical distribution for the ensemble of sam-
ples can be taken to describe the heterogeneity in a “typical” sample of the material. Be-
cause a “typical’ sample may never actually occur, this interpretation of the ensemble dis-
tribution function should be likened to a median value rather than a mean value. The RV
size and effective property values will be determined for the “typical” example of the ma-
terial. This is necessary both to make it possible to define the RV and to obtain values that
are more representative of the average response of a population of samples.

The extent to which the effective property values are representative depends on two
factors. One is how well the material response to a particular loading can be treated as the
response of a homogeneous material. The other is how closely the heterogeneity distribu-
tion in any individual sample approximates the distribution function for the ensemble. This
is the second probabilistic aspect of the procedure. It has the consequence that the macro-
scopic response determined using effective properties will not match the response of any
given sample. This adds the practical necessity of estimating the variance of the effective
properties to assess the range of responses that can occur in a population of objects made
of the heterogeneous material. From this it is seen that the macroscopic solid mechanics
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simulation that was supposed to be enabled by determining effective material properties
now needs to be a stochastic analysis to account for the variability of individuals from the
“typical” behavior.

Accounting for the uncertainty in the input to an analysis requires an additional mea-
sure of error besides the variances of the effective property values. The empirical ensemble
distribution function will not exactly represent the total population of material samples.
Thus a numerical analysis of an ensemble will provide an ensemble-averaged value and
variance for an effective property that can differ from those obtained by laboratory testing
a collection of samples, each larger than the RV. The laboratory specimens sample the true
distribution function, whereas the numerically generated systems sample the ensemble dis-
tribution function, which only approximates the true one. Ignoring measurement error,
what can we say about the magnitude of the disagreement between the numerical result and
the laboratory result? There is an additional consequence. Say we improve the ensemble
distribution function by enlarging the ensemble and then recalculate the effective property
mean value and variance. What is the relation of these revised values to those determined
with the more approximate ensemble distribution function?

Both the variances of the effective property values and the error owing to input uncer-
tainty would be useful for defining bounds for the range of responses that could occur. Are
the desired bounds related to those obtained by variational methods from an energy princi-
ple? In this regard it seems pertinent that the principle of complementary energy and the
principle of minimum energy consider different BCs, but we are working with BCI values
of effective properties. Also, the principles deal with energy definitions of effective prop-
erties, whereas the numerical analysis works with mechanically defined effective proper-
ties.

Beyond these questions of the applicability of variational bounds to effective property
values determined by direct numerical simulation are other questions that bear on the vari-
ety of systems to which the variational methods can be applied. In particular is the applica-
bility of variational bounding methods limited to perfectly bonded, linear materials lacking
any discontinuities across internal interfaces? Do extremum principles exist to allow
bounding methods to be applied to nonlinear or inelastic behavior? Do variational energy
principles provide noncoincident bounds when the system size exceeds the RV? It seems
likely that they do because system size does not enter into the bounding method, but why
does system size not enter into variational bounding method?

5. Establishing Conditions for BC Independence

As stated at the end of Section 2, we presume that for a given composite, some aspect
of the statistical description of the internal geometry of the material heterogeneities indi-
cates or, perhaps, determines whether a volume yields BC-independent averages. Verifying
that this is the case and identifying the particular feature of the statistical description of the
geometry that is an indicator will require numerical experimentation with model composite
systems. In this section we discuss items related to such an investigation. Particular inves-
tigations that will be pursued are outlined in Section 7.
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The numerical investigation on model systems will evaluate the suitability of various
statistical descriptions of the internal configuration of the material. For a simple material,

like a uniform matrix with spherical inclusions, the pair distribution functygm) , Or ra-
dial distribution functiong(r) , may be sufficient to statistically characterize the material.
g(r)dr is the probability of finding an inclusion whose center lies within an annulus, cen-

tered on a given inclusion, that has a thickriess ~ and radius of . For slightly more com-
plicated materials, like short fibers in a uniform matrix or micro-cracks in an otherwise ho-
mogeneous medium, the pair distribution function could be generalized to a vector function
that additionally accounts for inclusion shape and orientation. Pyrz suggests using the sec-

ond order intensity functior(r) , because it is a theoretically well-understood mathemat-

ical quantity?Cits radial derivative equarrg(r) . Pyrz demonstrated Ki{a) can dis-
criminate between different patterns.

Statistical homogeneity (see Section 2) is likely to be a sufficient condition for a vol-
ume to have BC-independent average properties. However, it is an overly restrictive re-
guirement for a given sized volume to be accepted as the RV size. Requiring statistical ho-
mogeneity for the RV needlessly dissolves the distinction between “statistically represen-
tative” and “statistically homogeneous.” Instead of requiring that the RV be statistically
homogeneous, it seems reasonable to expect that some aspect of the statistical description
of the internal geometry should indicate the size for which averages become nearly BC in-
dependent. For example, it may happen that a distribution function chosen as the statistical
description of a material changes qualitatively, but continuously, as the averaging volume
is increased sufficiently to provide BCI. Such an occurrence could be likened to a phase
transition, but one occurring in the distribution function rather than in the physical system.
This opens the possibility of applying the analysis techniques used for phase transitions to
try to identify, directly, the size of the RV. Such an analysis would be additionally attractive
if the parameter that describes the transition in the statistical distribution (the order param-
eter) can be related to the physical system. As background for anticipated developments
along these lines, the next section presents the physical interpretation of the correlation
length and a brief overview of current understanding of continuous phase transitions.

6. Critical Phenomena and Correlation Length

The correlation length is a low-order measure of a statistical distribution that, owing
to its physical significance, is a potentially useful quantity to use to express the criteria that
the internal geometry of a heterogeneous material must meet for volume averages to be
nearly BC independent. The RV and effective properties determined from it are only of in-
terest when a low-order approximation for the response of a material is adequate. For this
reason it is consistent to consider using a low-order approximation to the statistical distri-
bution for the purpose of identifying the size of the RV. To illustrate the physical meaning
of the correlation length, basic aspects of critical phenomena and the theory describing it
are presented. This section also provides background for understanding several lines of in-
quiry current in the literature in which the behavior of disordered systems are represented
by a variety of stochastic models. For this purpose brief descriptions of the scaling hypoth-
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esis and percolation theory are presented along with a discussion of the (doubtful) rele-
vance of critical phenomena to micromechanical modeling.

“Critical phenomena” is the modern term for the behavior previously referred to as
“higher-order phase transitions” or “continuous phase transitions.” “Phenomena,” especial-
ly in the current discussion, should be understood in a very general sense, not limited to
thermodynamic phase transformations. A system exhibiting a critical behavior undergoes
a continuous, qualitative change in its character. Some attribute of the system changes con-
tinuously from zero, when the temperature, or some other control variable, is above a
threshold value, to nonzero and growing for temperatures below the threshold. The quantity

that changes continuously from zero is called the “order parantét&While the order
parameter is zero, the system is entirely in the high-temperature, or “disordered,” phase.
Nonzero values of the order parameter indicate that the system is a mixture of ordered and
disordered phases. The magnitude of the order parameter provides a measure of the amount
of the ordered phase present in the system. (The nature of order parameters is such that the
new phase that is present only when an order parameter is nonzero has lower symmetry or
can be construed to be the more ordered phase.)

Continuous thermodynamic phase transitions are the prototypical critical phenomena,

with two cases being particularly accessible examﬂl@:liquid-vapor transition in a gas

at its critical point (CP), which is the point in the pressure-temperature plane where the
first-order liquid-gas phase boundary ends and (ii) ferromagnetic-paramagnetic transition
in a ferrous metal at the Curie temperature. The first distinguishing feature of these transi-
tions is that specific volume or magnetization, which are first derivatives of the Gibbs free
energy (with respect to pressure or magnetic field, respectively), are continuous across the
respective transitions. The order parameters of these two transformations are the difference
in density between the vapor and liquid and the net magnetization. Careful observation
demonstrates that the derivatives of the order parameter with respect to the intensive field
variables (which are second derivatives of the Gibbs energy) are not just discontinuous but
also have singularities at the critical point.

The concept of correlation length is motivated by the physical significance of these
singularities. The pressure derivative of the density is the compressibility and the magnetic
field derivative of the magnetization is the magnetic susceptibility. Near the Curie temper-
ature the latter becomes very large and large magnetization fluctuations result from very
small magnetic field fluctuations. Near the liquid-vapor CP, the compressibility becomes
very large, and large density fluctuations result from very small pressure fluctuations. Ex-
perimental confirmation of the large density fluctuations comes from observations that the
usually transparent fluid becomes milky white and opaque very near to the CP. This “crit-
ical opalescence,” as itis called, results from density fluctuations acquiring sufficient mag-
nitudes at wavelengths comparable to visible light that they strongly scatter light. In gener-
al, the derivative of an extensive thermodynamic variable with respect to the related inten-
sive variable (a “thermodynamic force”) is referred to as a “response function” or

“susceptibility.”®22 Elastic constants are a notable example of such quantities. These sus-

ceptibilities are the quantities that become large near a CP and singular at it. Consideration
of thermodynamic fluctuations in a system at thermodynamic equilibrium leads to the con-

clusion that the susceptibilities govern the spatial extent of fluctuations of the extensive
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variables?1??In particular in the thermodynamic limit, the static (zero frequency) suscep-

tibility is completely determined by the long wavelength, equilibrium fluctuafidtesnce
divergence of a susceptibility indicates that the extent of the corresponding fluctuations be-
comes as large as the system itself. The existence of long wavelength fluctuations means
that the response of the system is correlated over macroscopic distances. There is long-
ranged order. The order parameter value at one location becomes related to its value at a
distant location. Indeed, all intensive quantities acquire long-range correlations near a CP,
as explained next.

Thus critical phenomena depend on fluctuations in an essential way. Far from a CP,
fluctuations are of microscopic extent, comparable to the interparticle separation; but as the
CP is approached, they occur on an increasingly broad spectrum of wavelengths. At the CP
fluctuations at all wavelengths.e., all length scales - contribute to the values of the ther-

modynamic variable®23-2*Mathematically fluctuations are described by the correlation
function. The long wavelength fluctuations correspond to the mean of the correlation func-

tion.? The correlation length is a characteristic length associated with the correlation func-
tion. As the susceptibilities grow near the CP, the correlation function and its correlation
length also diverge. This correspondence indicates that the correlation &&mgtvides

a measure of the spatial range of order in the system. In particular the correlation length

marks thecrossovelbetween critical and ordinary behaviéfsvhen a system is treated

on alength scald, j.e.,averaged over a region of sizé , whdre is the system dimen-
sionality - for whichL « & , it exhibits power law critical behavior, just as at the CP. In con-

trast on length scales with» § , correlations decay exponentially fast and the behavior is
ordinary.

The correlation between two (or more) events is the difference between the joint prob-
ability of the pair of event®?, , and the product of the random probability of each event
alone,P; 23 A useful example is the pair of events in a system of particles that there is a

particle located at poirk , and another particle located at Boint  such that the distance
vector between these two positions is . The correlation, as a function of , is given by

C(H) = 3P,() ~P(FAPy(T3). (12)

To make this relation statistically meaningful, it needs to be averaged over an ensemble of
similar systems. The ensemble average is typically equated with a time average or a space
average over a single macroscopic sample by invoking ergodicity.

To extend this example, consider a simple lattice model of a binary alloy that entails
only very short-ranged interactions. Investigations of such models show that the state of oc-
cupation of a substituted lattice is characterized by a wide-spread order even though the in-

teractions only have a short rarfdé=or understanding how such long-ranged effects arise
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it is useful to study the correlation functioc®(r) . Theories of critical phenomena predict
a general form for the radial dependence of the correlation function gién by

C(r) Or "exp(-r/&) . (13)

Based on this behavior, the correlation length is defin® as
lim "—_r . (14)

Hencef has the physical significance of being a spatial range of correlations within the sys-
tem23An alternate scalar measure of correlations that gives the range of order is

r% = (r’c(Ir)d 3r/C(Ir))d 3r . (15)
| |

At the CP the correlation length, , and range of orfer, , both become infinite.

6.1 Universality and the Scaling Hypothesis

That fluctuations at all length scales contribute to the values of the thermodynamic
variables at the CP means that there is a loss of length scale for the system. The discrete
lattice spacing becomes irrelevant, and there is no fluctuation wavelength with any special
significance. Another manifestation of the loss of scale is that based on measurement and
analysis of model systems, the (singular part of the) thermodynamic functions are described

by power laws in the distance to the &#-Power laws are scale invariant, meaning that
the form of the function is unchanged by multiplying its argument by a scale factor. Con-
sequently, the function is self-similar at all scales. It has no characteristic length associated

with it.2% Basic thermodynamic and statistical mechanical arguments show that the expo-
nents of these power laws, the “critical exponents,” satisfy a set of inequality relations, in-

dependent of the details of any particular systéifhis is consistent with the idea that crit-
ical phenomena arise from long-ranged correlations, for which case it is reasonable to ex-
pect that at least some details of the interactions within the system are irrelevant to the

behavior near the CE Accepting this assumption, systems that share the same relevant
aspects would be expected to have comparable singular behavior at the CP. These expecta-
tions have lead to the universality hypothesisich asserts that all critical behaviors may

be classified according to the dimensionality of the system, the symmetry group of the or-

der parameter, and possibly a few other general critéfiaFor this reason it is of consid-
erable interest to determine critical exponents of the different universality classes. Know-
ing these, the dimensionality of a system, and the symmetry of its order parameter so that
its universality class can be identified, the qualitative behavior of the system near a CP is
known, if the universality hypothesis is correct.

The value of being able to describe thermodynamic functions near the CP and the in-
ference that a loss of length scale is intrinsic to critical behavior motivated the scaling hy-
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pothesis)21:23-25at the CP the correlation length, which marks the crossover between
critical and ordinary behaviors, diverges, making all finite lengths that are representative of
aspects of the system much smaller thafor this reason, at the CP it should not matter
what length scale is used in investigating the system; the system looks similar at all length
scales from the lattice spacing up to the system size. Based on these observations, Wilson
advanced the scaling hypotheg\s a CP is approached, thermodynamic functions change
their scale but not their functional form. This is described mathematically by expressing the

thermodynamic free energy as a homogeneous function (a generalized powettaw).
Scaling theory, which is the result of taking any free energy to be a homogeneous function
in the neighborhood of a CP, leads to a consistent description of the critical behavior. This
result shows the scaling hypothesis to be a unifying principle for critical phenomena. Be-
yond this scaling theory producegualityrelations among the critical exponents and con-
strains the form of the equation of state. Most notably scaling theory predicts that only two
critical exponents are independent. The predicted scaling behavior of thermodynamic func-
tions near a CP has been partially verified experimentally in addition to analytic and nu-
merical verification for model systems. Scaling theory does not predict the values of the
critical exponents, however. For determining these, a set of scale transformation tech-

niques, collectively known as renormalizaton group methods, have been de\?éloped.

6.2 Percolation

Percolation is a purely mathematical procedure that exhibits a kind of critical behavior

that is not a thermodynamic phase transition nor even a physical phencifréhtias
been used to good advantage as a technical tool to model a broad range of physical transi-

tion phenomend’ It was originally introduced as a model of fluid flow in a disordered me-
dium and recently has been investigated extensively as a model for fracture in disordered

materials?®2°The latter is particularly interesting in the context of the present inquiry, as
indicated in the introduction. We discuss percolation here as background for the anticipated
future investigation of microstructurally based fracture criteria. In addition, percolation
provides further illustration of the physical meaning of the correlation length. That perco-
lation theory provides a richer understanding of correlation length is an example of why it
has attracted much attention. Generally speaking, the critical behavior exhibited by perco-
lation models is highly accessible to investigation. Combined with the universality hypoth-
esis, this makes percolation a useful model of critical phenomena in physical systems. In-
vestigation of a percolation system having the same order parameter dimensionality and the
same spatial dimensionality as a physical system of interest can provide an accurate de-
scription of the near-CP response of the physical system if the universality hypothesis is
correct. Furthermore, percolation can provide insight into localized-to-extended state tran-

sitions when applied as a qualitative model of the physical phenorﬁénon.

In lattice percolation one considers randomly filling (marking) sites or bonds of a reg-

ular lattice with some fixed probability, 2*2’ Thestatisticalquestion of interest is, ‘for
what value of the filling probabilityon averagedoes a continuous path of marked sites
first develop through an arbitrarily large lattice?’ This critical fraction of filled sites is the
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“percolation threshold,p. ,and itis a critical pofftThe most noteworthy feature of the

percolation problem is that it is a simple model that exhibits critical phenomena. In this case
the “phase transition” is geometric, going from the absence of any continuous paths span-
ning the entire system to the existence of such a path, which is called the “infinite cluster.”
The infinite cluster covers an increasing portion of the lattice as the probability of occupan-
cy of the sites of the lattice is increased. The order parameter is the fraction of the system
occupied by the infinite cluster. Because lattice percolation and its generalization to con-
tinuous space, continuum percolation, can be conveniently investigated numerically, they
are useful for modeling. Furthermore, the details of systems that exhibit percolation are
quite varied. Only the simplest site percolation systems have been alluded to here. The flex-
ibility in defining percolation systems is an additional reason for their growing use for mod-
eling physical systems. Bond percolation is another class of percolation problems that ex-
hibit distinct differences from site percolation.

It should be emphasized that percolation is a stochastic model. This is typical of critical
phenomena, which are governed by system fluctuations and, consequently, dependent on

the statistical distribution of variable values, not just on their mean VAlTié® procedure

for investigating percolation numerically is to randomly fill a collection of identical finite-
sized lattices using a given filling probability. This process generates a large number of in-
dividual cases or “realizations” of the same overall state - namely, a fixed mean value of
the fraction of filled sites. This collection of many realizations is treated as an ensemble of
configurations, and conclusions concerning the behavior of a system that exhibits percola-
tion are statistical statements about the behavior of an ensemble of realizations of the sys-
tem subject to prescribed values of its independent controlling variables. This is the reason
for emphasizing “on average” in describing the percolation problem. For systems whose
analytic description is sufficiently simple, the alternative to working with an ensemble of
systems is to explicitly determine the behavior of one realization of the system in the ther-
modynamic, infinite size limit.

The range of order, Eqg. (15), is used in percolation theory as an alternate definition for
the correlation length*2°In the context of percolation, the correlation function is the
probability that a site a distanae, , from an occupied site is also occupied and is in the same

cluster. (A cluster is the group of all the sites connected together by a continuous path of
neighboring occupied sites.) The square of the range of order is then

r<C(r)
r2 = Z—, (16)
Y C(r)

where the summations run over all lattice sifés. determined in this way is the average
squared distance between two cluster sites in the lafitice. is consistent with that for ther-
modynamic phase transitions, Eq. (6), in as much as the critical exponent for it satisfies the
expected relations with the other expon@ﬁtﬁ. is also a measure of the largest hole in a
cluster and the radius of those clusters that make the main contribution to the mean cluster

size?4
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The physical significance of the correlation length and scaling properties of percolat-
ing systems were further illustrated by a numerical study of site percolation on a two-di-
mensional square lattic8.Kapitulnik et al.demonstrated that near the percolation thresh-
old, the infinite cluster is homogeneous on length scales much larger dmarramified
with holes on all scales smaller thaThus¢ is a measure of the size of heterogeneities in
the lattice.
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Figure 1. Schematic semilog plot of site density versus linear dimension of averag-
ing window for site percolation on a square lattice (after Kapitulnik et al.3%).

Figure 1 is a schematic of their results. For averaging afeas  within the system with
L <&, the density of occupied sites in the cluster varies as a power of . This is indicated
by the linear part of the curve at smiall . For averaging aread with , the cluster den-
sity is roughly constant and the system appears to be homogeneous. This corresponds to the
shallow-sloping midportion of the curve. Their study also demonstrated a further effect of
correlations. As the averaging area approached the size of the simulated system, the calcu-
lated cluster density again varied with the size of the averaging area, as indicated by the
steepening of the curve at large . This result is an example of calculated values of system
properties being sensitive to the boundary conditions. Appropriately the range of influence
of these boundary effects is given by the correlation leggth, . This is consistent with the
notion that the correlation length characterizes the range of influence between separate re-
gions of the system.

By repeating the numerical exercise for a different valyg of , the probability of site
occupancy, Kapitulnilet al. also found that the percolation system exhibited scaling be-

havior.30They showed tha& increasedms neged , and the average site density on the

homogeneous scale & ¢ ) decreased, both in accordance with the expected power law be-
havior. Far below the percolation threshold, only small clusters occur and the correlation
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length is on the order of the lattice spaciag, . In this regime the lattice spacing provides a
relevant length scale. Near the percolation threshold the lattice spacing becomes unimpor-
tant because the range of cluster sizes increases substantially, and the clusters contain holes
of all sizes smaller than themselves. The resulting ramification of the clusters corresponds,
for critical phase transitions, to the thermodynamic functions being determined by fluctua-
tions with an increasingly wide range of wavelengths. In that same sense there is a loss of
length scale. The correlation length, which can be interpreted as the radius of those clusters

that make the dominant contribution to the mean clustef&igehe only available length
scale. Both it and the size of the infinite cluster, which is the order parameter, diverge as

power laws near the percolation threshqid, , as is expected from the scaling hypothesis.

Generally speaking, can be a measure of heterogeneity. In percolation it gives the lin-
ear extent of geometric heterogeneities. In physical systems it characterizes the linear ex-
tent of heterogeneities in field variable values. Because these are the attributes that we de-
sire for an RV, the correlation length is an appealing candidate for defining RV size. Sev-
eral questions need to be resolved to establish that a correlation length is suitable for the
RV size. When applied to a mechanical system, does the correlation length retain all of the
attributes that it has for critical phenomena? What is the analogy to critical phenomena?
What correlations are of interest? How should an RV defined in terms of a correlation
length be used? Does scaling behavior occur? Under what conditions? The discussion in
the next subsection bears on these questions. Answers to these questions will be pursued
through the numerical experiments on model heterogeneous systems that are described in
Section 7.

6.3 Discussion

A key question to resolve in determining how to use the numerical simulations of mi-
crostructural processes to develop constitutive models is whether real microstructural me-
chanics processes exhibit critical phenomena. A micromechanical system that does have
critical behavior is highly amenable to investigation with a percolation model. In addition,
we can immediately infer several qualitative aspects of the behavior of a system in which
critical microstructural processes occur: The “interesting” macroscopic behavior of the sys-
tem is governed by the distribution of values of the microstructural quantities, not just their

mean valued2’ A correlation lengthg, can be defined that characterizes the statistical
distribution, which evolves during deformation. The correlation length could be taken to
define the linear dimension of an RV because it marks the crossover between small length
scales, on which different regions of the system behave differently, and large length scales,
on which all regions of the system are comparable. Presumably the requirements of EMT
are satisfied for RVs of this size subjected to macroscopically uniform BCs. Provided the
mesh elements used in a FEM simulation are largeréhifwe material is macroscopically
homogeneous.

Near the CP the correlation length is finite but becomes macroscopically large. Thus
if a micromechanical system exhibits critical behavior, the RV has a variable size, and near
the CP the RV can exceed the size of mesh elements. When this occurs, the material within
one mesh element may not be equivalent to the material within another element. A consti-

24



Aidun et al.6. Critical Phenomena and Correlation

tutive description need not be abandoned, but a different constitutive model has to now be
used to the extent that well-defined constitutive variables cannot be determined by simple
volume averaging over an RV. The material response may become nonlocal. Where RV av-
eraging is inadequate, an alternative approach to defining relevant constitutive quantities
may present itself. Because the system is near a CP, applying the scaling hypothesis may
provide a link between microstructural and macroscopic response and may be a basis for
developing an appropriately altered constitutive model. This last possibility needs to be in-
vestigated more fully.

A related question is whether a numerical model chosen to represent regular (noncrit-
ical) micromechanical behavior can, itself, exhibit critical behavior. When this is a possi-
bility, the region of parameter space that produces critical behavior in the numerical model
then needs to be identified and avoided when the model is applied.

Preliminary to determining whether a given micromechanical system or numerical
model exhibits critical behavior, it will be necessary to develop a statistical description of
a material’'s heterogeneity. A useful statistical description will represent the distribution of
the variables whose correlations control the material response. Such a statistical description
is desirable, regardless of whether there is critical behavior, as discussed in Section 5.

In order to apply a typical percolation model to represent microcracking behavior, sev-
eral questions should be considered. Is the ultimate state of pervasive cracking that produc-
es a system-spanning fracture critical behavior, as is implicit in the percolation modeling
approach? The first step required to answer this question is to identify the microstructural
guantity whose fluctuations exert a significant influence on the macroscopic behavior.
Does this quantity qualify as an order parameter? Large values should correspond to being
far from the CP, and it should be discontinuous across a first-order transition with the dis-

continuity vanishing as the CP is approaché8econd, do these fluctuations become crit-
ical - that is, does their correlation length diverge and are there fluctuations at all wave-
lengths when it does? (Together, these indicate a loss of length scale.) Answering these
guestions not only identifies whether we are dealing with critical phenomena but also es-
tablishes the analogy to a model critical system. This is important for interpreting the re-
sults whenge.g, a percolation model is used to represent microcracking resulting in frac-
ture.

Disorder is cited as a defining feature of the systems in which microcracking has been

modeled with percolatioff The disorder can be of any kind, from extensive material het-
erogeneity, or just local strength variability within a single crystal. Some aspects of the re-
sponse of disordered systems can be modeled as critical phenomena when the statistical
distribution of the disorder, not simply the average amount of disorder, governs the system
behavior. Recall that the spread of the probability distribution of the disorder can be char-
acterized by a correlation function. Hence the correlation length can provide a measure of
the fluctuations of the spatial disorder within an ensemble of systems. When the response
depends on only the average amount of the disorder, its analysis does not require ensemble
averaging or, equivalently, taking thermodynamic limits.

The elastic network is a version of a bond percolation model that has been investigated
in an attempt to obtain insight into cracking in disordered brittle materials. The situation
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that is modeled by an elastic network is microcrack nucleation at randomly located flaws
or weaknesses and coalescence to form a macroscopic fracture in an initially uniform body

subjected to far-field tensicif.It has also been investigated with some experimental per-

colation model$132|n contrast to a typical percolation model, evolution of the elastic net-
work is more directly governed by physics. For each increment in strain, the stresses in the
network of elastic bonds are explicitly calculated. The bond that reaches a failure condition
first is removed and the stresses are recalculated. This is repeated for a given strain incre-
ment until equilibrated stresses are obtained for which no more bonds reach failure. In fur-
ther contrast with typical percolation models, the resulting ensemble behavior of the elastic
network systems has been interpreted as exhibiting a scaling behavior for typical situations

and not the scaling that develops near &€Fhe noncritical scaling is likened to the way

the scaling behavior of turbulence is describ&tihe concept of noncritical scaling and the
role that a correlation length may play is not yet clear and needs to be studied further.

7. Initial Study

To begin to investigate the issues that have been identified, in particular criteria for de-
fining RV size, we will pursue the following investigations.

To illustrate the concepts of macroscopically equivalent systems and bulk property de-
termination in statistical physics, we will investigate the calculation of stress in a discrete
system using molecular dynamics simulations. The two parts of Eq. (A4), presented in the
Appendix, will be evaluated for model systems to verify the points stated by Balescu. The
model systems will be an FCC crystal of atoms interacting according to a Lennard-Jones
potential and a similar FCC crystal having randomly positioned point defects. The perfect
crystal will be treated at finite temperature, where thermal motion will introduce irregular-
ity. The defective crystal will be analyzed at zero temperature after the system is allowed
to relax to an equilibrium configuration. For both types of systems, the simulations will
proceed by deforming a large system to induce a state of stress. This will be followed by
calculation of the bulk and surface contributions to macroscopic stress from the two parts
of Eq. (A4) for a variety of subvolumes.

The results of these calculations will be evaluated for the expected trends given by Egs.
(1) and (2) and to distinguish system surface effects from averaging region size effects. The
latter evaluations will entail comparison of distances within the system with a relevant cor-
relation length. For the crystal with point defects, this should be related to the radial distri-
bution function of the point defects. For the perfect crystal the minimum-sized bulk system
is the unit cell at zero temperature. For a warm crystal it is larger with the relevant correla-
tion length expected to be related to the wavelength of some characteristic lattice vibration.

Another investigation will assess the criteria for defining the RV discussed in the
present report. In the first part of this study, we will seek to confirm that equilibrium effec-
tive properties that are independent of the choice of BCs can be obtained by increasing the
system volume and/or the averaging volume for a heterogeneous continuum. The averaging
volume need not be as large as the system volume. As discussed above, in the case of site
percolation the averaging volume needed to be smaller than the system volume to avoid
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boundary effectS® Two heterogeneous continuum models are needed to perform this ex-
ercise. The first should maintain continuity throughout the deformation so that the funda-
mental results of effective medium theory can be confirmed for numerical application. The
second model should include some form of cracking to test our ability to properly treat dis-
continuities in otherwise continuous systems. Suitable microstructural test models will be
sought from those that are being developed and applied in concurrent projects at SNL, both
for expediency and because it is anticipated that these two projects will be able to use the
results of the present project. Candidate model systems to use in these investigations in-
clude: glass microballoon-filled epoxy, an elastically and plastically deformable polycrys-
tal aggregate, and a randomly microcracked elastic body.

The second part of this study is to address how to statistically characterize the hetero-
geneity and identify aspects of the statistical characterization that indicates RVE size. This
will be pursued by testing different means of computing and then interpreting correlation
lengths for all of the simulations performed in the first part of this study. Developing algo-
rithms for computing the correlation function and length in the types of numerical models
of interest is a necessary first step. Following this will be the more interesting step of inter-
preting the resulting correlation information. This will be aimed at relating the correlation
length of the most relevant variables to criteria for BCI of equilibrium effective properties.

It will be of interest to follow up this assessment of criteria for identifying the RV by
using the results of the above investigation to determine the extent to which fracturing can
be regarded as a critical phenomenon. It would be appropriate for this purpose to use an
elastic network model in which fracture has been treated by others as being a critical phe-

nomenor?® The computer program GLAD, being used in two projects at SNL is such a
model. This makes a close comparison with previous investigations more manageable. Giv-
en our ambition of developing criteria relating microcracking to macroscopic cracking, it
will be useful to clearly identify which aspects of microscopic cracking can be associated
with critical behavior. Under conditions that elicit the supposed critical behavior of micro-
cracking, the relation to macrocracking must change. Volume averaging should become
untenable owing to correlation lengths enlarging, but at the same time, scaling relations
should become applicable. Thus this part of the study, seeking to identify critical behavior
in a model system with cracking, is the first step in properly treating the macroscopic con-
sequences of possible critical behavior for microcracks.

Beyond these particular investigations, attention needs to be given to how to develop
effective property treatments of inelastic (nonlinear) response and to identifying how to
simplify the constitutive description in a simulation on a length scale smaller than the RVE.
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APPENDIX
Example Bulk Property Calculation: Stress in a Discrete System

The configurational stress in a system of particles whose interaction is described by
the crystal potentiakp , is given %i'y
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whereR} s thell component of the position vector to ' particle. Greek superscripts

label particles and latin indices label Cartesian components. Consider the case where the
crystal potential is the sum of pairwise interactions between the particles. We have

N N 1
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and takingR™ =R{' —R? | the configurational stress becomes
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Assuming that the particle interactions have a finite range, this expression can be separated
into sums oveM interior particles ai—- M near-surface particles results in a form sim-
ilar to that of Eq. (1):

M N N N
_ 1 ap ap 0B 1 ap —ap ap
0 = 2szRi 0/ e +2VZ ZRi O e . (A4)
a=106=1 o=M +1 B=1

The first double sum includes all of the interactions offhe  patrticles that are farther from
the surface than the particle interaction range. It is expected to give the bulk value of stress
in the system, analogousfo in EqQ. (1). Based on Balescu’s characterization presented in
Section 3, it is expected that this interior bulk contribution will be constant for sufficiently
large systems. The second double sum includes all of the particles that are close enough to
the surface to interact with particles (in the case of applied mechanical contact forces) that
are outside of the system. Note that the interactions with the external particles are not in-

cluded in the second double sum sidze s the crystal potential not the total pBtential.
The surface contribution to;; expressed by the second double sum obeys Eq. (2) since,

with increasing system size, V increases faster than the number of contribution to this dou-
ble sum.
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